106 research outputs found

    Both an N-Terminal 65-Kda Domain and a C-Terminal 30-Kda Domain of Seca Cycle into the Membrane at Secyeg During Translocation

    Get PDF
    SecA, a 102-kDa hydrophilic protein, couples the energy of ATP binding to the translocation of preprotein across the bacterial inner membrane. SecA function and topology were studied with metabolically labeled [35S]SecA and with inner membrane vesicles from cells that overex- pressed SecYEGDFyajC, the integral domain of preprotein translocase. During translocation in the presence of ATP and preprotein, a 65-kDa N-terminal domain of SecA is protected from proteolytic digestion through insertion into the mem- brane, as previously reported for a 30-kDa C-terminal domain [Economou, A. & Wickner, W. (1994) Cell 78, 835–843]. Insertion of both domains occurs at saturable SecYEGDFyajC sites and is rapidly followed by deinsertion. SecA also asso- ciates nonsaturably and unproductively with lipid. In the presence of ATP, yet without involvement of preprotein or SecYEG, lipid-bound SecA forms domains that are protease- resistant and that remain so even upon subsequent membrane disruption. Unlike the [35S]SecA that inserts into the mem- brane at SecYEGDFyajC as it promotes preprotein translo- cation, lipid-associated [35S]SecA does not chase from its protease-resistant state upon the addition of excess SecA. The finding that two domains of SecA (which together represent most regions of the polypeptide chain) cycle into the mem- brane during preprotein translocation, as well as the distinc- tion between the membrane association of SecA at transloca- tion sites of SecYEGDFyajC and at nonproductive lipid sites, are fundamental to the study of the role of SecA in preprotein movement

    The Tethering Complex HOPS Catalyzes Assembly of the Soluble SNARE Vam7 into Fusogenic Trans-SNARE Complexes

    Get PDF
    The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The functional significance of this interaction, however, has been unclear. Using a fully reconstituted in vitro fusion reaction, we now show that HOPS facilitates membrane fusion by recruiting Vam7p for fusion. In the presence of HOPS, unlike with other tethering agents, very low levels of added Vam7p suffice to induce vigorous fusion. This is a specific recruitment of Vam7p rather than an indirect stimulation of SNARE complex formation through tethering, as HOPS does not facilitate fusion with a low amount of a soluble form of another vacuolar SNARE, Vti1p. Our findings establish yet another function among the multiple tasks that HOPS performs to catalyze the fusion of yeast vacuoles

    A Cascade of Multiple Proteins and Lipids Catalyzes Membrane Fusion

    Get PDF
    Recent studies suggest revisions to the SNARE paradigm of membrane fusion. Membrane tethers and/or SNAREs recruit proteins of the Sec 1/Munc18 family to catalyze SNARE assembly into trans-complexes. SNARE-domain zippering draws the bilayers into immediate apposition and provides a platform to position fusion triggers such as Sec 17/Ξ±-SNAP and/or synaptotagmin, which insert their apolar wedge domains into the bilayers, initiating the lipid rearrangements of fusion

    N-Terminal Domain of Vacuolar SNARE Vam7p Promotes Trans-SNARE Complex Assembly

    Get PDF
    SNARE-dependent membrane fusion in eukaryotic cells requires that the heptad-repeat SNARE domains from R- and Q-SNAREs, anchored to apposed membranes, assemble into four-helix coiled-coil bundles. In addition to their SNARE and transmembrane domains, most SNAREs have N-terminal domains (N-domains), although their functions are unclear. The N-domain of the yeast vacuolar Qc-SNARE Vam7p is a binding partner for the homotypic fusion and vacuole protein sorting complex (a master regulator of vacuole fusion) and has Phox homology, providing a phosphatidylinositol 3-phosphate (PI3P)-specific membrane anchor. We now report that this Vam7p N-domain has yet another role, one that does not depend on its physical connection to the Vam7p SNARE domain. By attaching a transmembrane anchor to the C terminus of Vam7p to create Vam7tm, we bypass the requirement for the N-domain to anchor Vam7tm to reconstituted proteoliposomes. The N-domain of Vam7tm is indispensible for trans-SNARE complex assembly in SNARE-only reactions. Introducing Vam7(1-125)p as a separate recombinant protein suppresses the defect caused by N-domain deletion from Vam7tm, demonstrating that the function of this N-domain is not constrained to covalent attachment to Vam7p. The Vam7p N-domain catalyzes the docking of apposed membranes by promoting transinteractions between R- and Q-SNAREs. This function of the Vam7p N-domain depends on the presence of PI3P and its affinity for PI3P. Added N-domain can even promote SNARE complex assembly when Vam7 still bears its own N-domain

    LMA1 Binds to Vacuoles at Sec18p (NSF), Transfers upon ATP Hydrolysis to a t-SNARE (Vam3p) Complex, and Is Released during Fusion

    Get PDF
    AbstractVacuole fusion requires Sec18p (NSF), Sec17p (Ξ±-SNAP), Ypt7p (GTP binding protein), Vam3p (t-SNARE), Nyv1p (v-SNARE), and LMA1 (l ow Mr a ctivity 1, a heterodimer of thioredoxin and IB2). LMA1 requires Sec18p for saturable, high-affinity binding to vacuoles, and Sec18p β€œpriming” ATPase requires both Sec17p and LMA1. Either the sec18-1 mutation and deletion of IB2, or deletion of both IB2 and p13 (an IB2 homolog) causes a striking synthetic vacuole fragmentation phenotype. Upon Sec18p ATP hydrolysis, LMA1 transfers to (and stabilizes) a Vam3p complex. LMA1 is released from vacuoles in a phosphatase-regulated reaction. This LMA1 cycle explains how priming by Sec18p is coupled to t-SNARE stabilization and to fusion

    Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen

    Get PDF
    Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p–GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen

    Remodeling of organelle-bound actin is required for yeast vacuole fusion

    Get PDF
    Actin participates in several intracellular trafficking pathways. We now find that actin, bound to the surface of purified yeast vacuoles in the absence of cytosol or cytoskeleton, regulates the last compartment mixing stage of homotypic vacuole fusion. The Cdc42p GTPase is known to be required for vacuole fusion. We now show that proteins of the Cdc42p-regulated actin remodeling cascade (Cdc42p β†’ Cla4p β†’ Las17p/Vrp1p β†’ Arp2/3 complex β†’ actin) are enriched on isolated vacuoles. Vacuole fusion is dramatically altered by perturbation of the vacuole-bound actin, either by mutation of the ACT1 gene, addition of specific actin ligands such as latrunculin B or jasplakinolide, antibody to the actin regulatory proteins Las17p (yeast Wiskott-Aldrich syndrome protein) or Arp2/3, or deletion of actin regulatory genes. On docked vacuoles, actin is enriched at the β€œvertex ring” membrane microdomain where fusion occurs and is required for the terminal steps leading to membrane fusion. This role for actin may extend to other trafficking systems

    The Docking Stage of Yeast Vacuole Fusion Requires the Transfer of Proteins from a Cis-Snare Complex to a Rab/Ypt Protein

    Get PDF
    The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking

    Hierarchy of Protein Assembly at the Vertex Ring Domain for Yeast Vacuole Docking and Fusion

    Get PDF
    Vacuole tethering, docking, and fusion proteins assemble into a β€œvertex ring” around the apposed membranes of tethered vacuoles before catalyzing fusion. Inhibitors of the fusion reaction selectively interrupt protein assembly into the vertex ring, establishing a causal assembly hierarchy: (a) The Rab GTPase Ypt7p mediates vacuole tethering and forms the initial vertex ring, independent of t-SNAREs or actin; (b) F-actin disassembly and GTP-bound Ypt7p direct the localization of other fusion factors; (c) The t-SNAREs Vam3p and Vam7p regulate each other’s vertex enrichment, but do not affect Ypt7p localization. The v-SNARE Vti1p is enriched at vertices by a distinct pathway that is independent of the t-SNAREs, whereas both t-SNAREs will localize to vertices when trans-pairing of SNAREs is blocked. Thus, trans-SNARE pairing is not required for SNARE vertex enrichment; and (d) The t-SNAREs regulate the vertex enrichment of both G-actin and the Ypt7p effector complex for homotypic fusion and vacuole protein sorting (HOPS). In accord with this hierarchy concept, the HOPS complex, at the end of the vertex assembly hierarchy, is most enriched at those vertices with abundant Ypt7p, which is at the start of the hierarchy. Our findings provide a unique view of the functional relationships between GTPases, SNAREs, and actin in membrane fusion
    • …
    corecore